
Supplemental online material 

Neural plasticity in amplitude of low frequency fluctuation, 

cortical hub construction, regional homogeneity resulting from 

working memory training 
 

Hikaru Takeuchi1, Yasuyuki Taki123, Rui Nouchi4, Atsushi Sekiguchi2,5, Yuka Kotozaki6, 

Seishu Nakagawa5, Carlos Makoto Miyauchi5, Yuko Sassa1, Ryuta Kawashima1,5,6 

 

1Division of Developmental Cognitive Neuroscience, Institute of 

Development, Aging and Cancer, Tohoku University, Sendai, Japan 

2Division of Medical Neuroimaging Analysis, Department of Community 

Medical Supports, Tohoku Medical Megabank Organization, Tohoku 

University, Sendai, Japan 

3Department of Radiology and Nuclear Medicine, Institute of Development, 

Aging and Cancer, Tohoku University, Sendai, Japan 

4Human and Social Response Research Division, International Research 

Institute of Disaster Science, Tohoku University, Sendai, Japan 

5Department of Functional Brain Imaging, Institute of Development, Aging 

and Cancer, Tohoku University, Sendai, Japan  

6Smart Ageing International Research Center, Institute of Development, 

Aging and Cancer, Tohoku University, Sendai, Japan 

 

Short title: Training alters spontaneous activity 



Key words: working memory, training, plasticity, fractional amplitude of low frequency 

fluctuation, degree centrality, regional homogeneity, resting state 

 

Corresponding author: 

Hikaru Takeuchi 

Division of Developmental Cognitive Neuroscience, Institute of Development, 

Aging and Cancer, Tohoku University 

4 − 1 Seiryo-cho, Aoba-ku, Sendai 980−8575, Japan 

Tel/Fax: +81-22-717-7988 

E-mail: takehi@idac.tohoku.ac.jp 

mailto:takehi@idac.tohoku.ac.jp


 

Supplemental Methods 

Procedure 

As described in our previous study 1, the WMT program consisted of in-house 

developed Borland C++ programs comprising four computerized tasks. Subjects 

participated in approximately four weeks (27 days) of training (approximately 40 min 

per day). However, the total training time depended on the level and time between trials. 

Hence, subjects used the program on their personal computers, and were encouraged to 

perform the WMT tasks every day, in addition to the two weekly training sessions in the 

laboratory. Details are described in our previous study 1. Subjects in the no-intervention 

group participated in pre- and post-experiments based on (a) the recommendation of the 

previous review 2, (b) the lack of effects in the active control group in our previous 

study 3, in which sample characteristics and experimental settings were similar to the 

present study, and (c) the overwhelming number of studies that, in contrast with popular 

belief, failed to show effects in active control groups 4-6. Moreover, active control 

groups are inappropriate controls due to specific effects of active control training on 

measures where they aren’t supposed to have specific effects 2. The lack of an active 

control or no control groups combined with within-training group analyses with training 



variables are gold standard procedures for imaging studies of cognitive training 2. In 

particular, no previous studies show that these well-controlled active interventions affect 

resting state fMRI measures, and to the best of our knowledge, there is no persuasive 

scientific theory that suggests changes to resting state fMRI measurements. Hence, 

inclusion of both active control and no intervention groups is ideal 2, but is usually 

suboptimal from a statistical perspective 2.  

 

Training tasks 

As described in our previous study 1, four WMT tasks were presented during 

each training session. In all training tasks, difficulties (number of items to be 

remembered) were modulated based on subjects’ performance. The four WMT tasks 

were as follows: (a) a visuospatial WM task, (b) an auditory backward operation span 

task, (c) a dual WM task, (d) a dual N-back task. 

(a) In the visuospatial WM task, circles are presented one at a time (1/s rate) in 

an interface of 10 irregularly distributed squares (circles are presented in one of these 

squares). After the presentation of stimuli, subjects indicate the location and order of the 

presented stimuli by clicking on a computer screen with a mouse. (b) In an auditory 

backward operation span task, pairs of single digits (0–9) are verbally presented at a rate 



of 1 pair/3 s. Within this 3-s period, one digit is presented per second, but in the final 

second, no stimuli are presented. Therefore, four pairs of digits are presented as follows: 

1, 3, no stimulus; 4, 9, no stimulus; 3, 7, no stimulus; and 2, 5, no stimulus. Subjects 

were required to remember the value that was the sum of the presented pairs of digits, 

and the order in which they were presented (in the above example, they were required to 

remember 4, 3, 0, 7). After presentation, subjects were required to repeat the sequence 

by pressing numbered buttons on the screen in reverse order (7, 0, 3, 4 in the above 

example). (c) In the dual WM task, which is similar to that of a previous study 7, 

subjects concurrently performed a visuospatial WM task and an auditory digit span task. 

In that study, circles were presented one at a time at a rate of 1/3 s in the same interface 

used for the task (a). After the presentation of stimuli, subjects indicated the location 

and order of the presented stimuli by clicking on a computer screen with a mouse. One 

digit (0–9) was verbally and simultaneously presented with the circle presentation. After 

the presentation of stimuli, subjects indicated the digits and the order of stimuli by 

pressing numbered buttons on the screen in the order of presentation. Subjects could 

perform either task first. (d) In the dual WM task, which was similar to that in a 

previous study of WMT 8, squares at eight different locations were sequentially 

presented on a computer screen at a rate of 3/1 s (stimulus length, 500 ms; 



inter-stimulus interval, 2,500 ms). Simultaneously, one of eight consonants was 

sequentially presented using headphones and a response was required whenever one of 

the presented stimuli matched the stimuli previously presented at the (n) position in the 

sequence. Additional details regarding the practical aspects of the task procedures and 

training are described in our previous study 1. Training times for each task were not 

necessarily exactly equal among the four tasks, although tasks were performed in the 

fixed order [(a)–(d)]. The same task was not used for assessment prior to the 

intervention period.  

 

Preprocessing and individual-level analysis of imaging data 

Preprocessing of imaging data was performed using SPM8 implemented in Matlab and 

SPM8’s extension software DPARSF (Data Processing Assistant for Resting-state 

fMRI). In the following procedures, we avoided co-registration and co-normalization 

procedures (which use the same normalization parameters for both pre- and 

post-images) for pre- and post-images, including registration of mean images to pre- 

and post-images, because of concerns of possible bias or problems occurring when 

image properties were substantially different between pre- and post-images 9.  

For each session and each subject, the first image of a series of BOLD images was skull 

stripped by masking the images using the threshold of a given signal intensity from 



spatially smoothed (using 8 mm FWHM) BOLD images. This skin-skull-stripping 

procedure was performed so that these parts were not treated as the outer edge of the 

brain parenchyma in the preprocessing procedures. Furthermore, the skull-stripped 

BOLD image was co-registered to a previously created custom made skull-stripped EPI 

template. The series of BOLD images for each session for each subject was slice-timing 

corrected and realigned using DPARSF. The series of BOLD images for each session for 

each subject were segmented and independently normalized on the basis of the modified 

diffeomorphic anatomical registration through exponentiated lie algebra 

(DARTEL)-based methods 10 to give images with 3.75 × 3.75 × 3.75 mm3 voxels. In 

this process, a custom template was also created 10, and the whole brain mask, which 

comprises voxels that show gray matter tissue probability + white matter tissue 

probability + cerebrospinal fluid (CSF) tissue probability >0.1, the mask of the areas 

that are likely to be white matter (white matter tissue probability >0.99, to avoid 

contamination of signals from white matter), and the mask of the areas that are strongly 

likely to be CSF (CSF tissue probability >0.99, to avoid the contamination of signals 

from other tissues) were created from the custom template. 

 The normalized series of BOLD images were processed by DPARSF for 

individual level analysis. Initially, 26 nuisance covariates (including mean signals from 

the voxels within the white matter mask, mean signals from the voxels within the CSF 

mask, and Friston 24 motion parameters were analyzed. The Friston 24-parameter 

model (six head motion parameters, six head motion parameters one time point before, 

and the 12 corresponding squared items) 11 was used to regress out head motion effects. 

Recent work indicates that regressing out Friston 24-parameters is more effective than 

other movement correction methods, such as corrections for rigid-body using six 



parameters, derivative 12 parameters, and 12 voxel-specific  regressors 12. To further 

eliminate residual effects of motion on rsfMRI measurements, volume-level mean 

framewise displacements were computed and used as covariates in second-level 

analyses 13.  

Recent controversy regarding whether or not the whole brain signal should be 

regressed out in the rsfMRI analysis continues 14, and regressing out the whole brain 

signal may have merits 12 and weaknesses 15. In this study, we did not regress out the 

whole brain signal because it partly reflects global brain activity 16, and it has been 

suggested that WMT may affect global brain activity 1. Furthermore, although 

regressing out the whole brain signal facilitates the distinction between network specific 

brain activity and global brain activity, our main focuses fALFF and DC do not involve 

network specific activity and regressing out whole brain activity is particularly 

conceptually problematic for calculating DC, which is the correlation between one 

voxel and the whole brain.  

 Processed images were spatially smoothed with 8-mm FWHM, and the 

resulting images were masked with the whole brain mask that was created as described 

above.  

Analyses of fALFF were performed using the DPARSF software as previously 

described 17, 18. The time series of each voxel was transformed into the frequency 

domain, and the power spectrum was obtained. Because the power of a given frequency 

is proportional to the square of the amplitude of that frequency component, the square 

root was calculated at each frequency of the power spectrum, and the average square 



root was then obtained across 0.01–0.08 Hz at each voxel. This average square root was 

taken as ALFF. For analyses of fALFF, the ratio of the power of each frequency at a low 

frequency range to that of the entire frequency range (fALFF) was computed as 

described previously 19, 20. Specifically, after preprocessing, time series for each voxel 

were transformed into the frequency domain without band-pass filtering. The square 

root was calculated at each frequency of the power spectrum, and the sum of the 

amplitudes across 0.01–0.08 Hz was divided by that of the entire frequency range. 

After preprocessing, fMRI data were temporally band-pass filtered (0.01 < f < 

0.08 Hz) to reduce low frequency drift and high frequency. Furthermore, weighted DC 

measures were calculated using DPARSF, as previously described 21. Briefly, Pearson 

correlation coefficients were initially computed between the time series of all pairs of 

gray matter voxels, leading to whole-brain functional connectivity matrices for each 

individual. We calculated this across the whole brain regardless of area because 

previous studies using large sample sizes have shown the strength of functional 

connectivity with the periphery of functional networks and gray matter (rather than deep 

areas within functional areas or gray matter) are important for cognition 10. Individual 

correlation matrices were transformed into a Z-score matrix using Fisher’s r–z 

transformation to improve normality. We further computed weighted DC strengths of 



voxels as the sum of the connections (Z-values) with all other voxels. As described 

previously 22, we conservatively restricted our analysis to positive correlations above a 

threshold of r = 0.25. A relatively higher threshold was chosen to avoid counting voxels 

with weak correlations that reflect signal noise. Finally, standardized weighted DC maps 

were acquired by subtracting mean values from within the abovementioned gray matter 

mask, and then dividing by the standard deviation of the whole gray matter mask 23. 

Voxels with higher DC values reflect the sum of the connections for a given voxel and 

all other voxels, and are thus indicative of their central roles in transferring information 

across brain regions. 

Subsequently, we calculated regional homogeneity images according to 

previously described procedures 24. Initially, spatially normalized rsfMRI images were 

band-pass filtered (0.01 < f < 0.08 Hz) and masked using the whole brain mask. A 

regional homogeneity value was then calculated to measure similarity of the time series 

of a given voxel with its nearest 26 voxels. After normalization, the resulting images 

were spatially smoothed using 8-mm FWHM. Normalization of regional homogeneity 

maps was performed by dividing the regional homogeneity among each voxel by the 

average regional homogeneity of the whole brain. This regional homogeneity value is 

known as Kendall’s coefficient concordance (KCC) 25, and is used to measure the 



similarity of a time series of a given voxel with that of its nearest voxels in a voxel-wise 

way, based on the assumption that voxels are temporally similar to their neighbors 26. 

Using this method, we measured temporal homogeneity of regional BOLD signals, 

which reflected the temporal homogeneity of neural activity. The formula to calculate 

KCC has been expounded in previous studies 27.  

 



Supplemental Table 1. 

The average of all subjects’ highest performances [the N (number of items to be 

remembered) in the WM tasks in which subjects answered accurately] on WMT tasks 

among the first and last three training sessions. 

 

First three 

sessions 

(items) 

Last three 

sessions 

(items) 

Visuospatial WM task 8.82 ± 0.81 11.48 ± 1.92 

Auditory backward operation span task 9 ± 1.44 15.18 ± 3.80 

Dual WM task 7.58 ± 0.83 10.03 ± 1.38 

Dual N-back task 2.82 ± 0.73 5 ± 1.20 

Data obtained from 1 subject whose final performance data were missing were removed 

from the calculation of the average in this task. 
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